已知椭圆的中心在坐标原点,对称轴为坐标轴,焦点在轴上,有一个顶点为,.(1)求椭圆的方程;(2)过点作直线与椭圆交于两点,线段的中点为,求直线的斜率的取值范围.
点(-1,k)在伸压变换矩阵之下的对应点的坐标为(-2,-4),求m、k的值.
求点A(2,0)在矩阵对应的变换作用下得到的点的坐标.
如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,圆O是△BDE的外接圆. (1)求证:AC是圆O的切线; (2)如果AD=6,AE=6,求BC的长.
如图,正三角形ABC外接圆的半径为1,点M、N分别是边AB、AC的中点,延长MN与△ABC的外接圆交于点P,求线段NP的长.
如图,弦AB与CD相交于⊙O内一点E,过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2,求PE.