已知动点P,Q都在曲线C: (t为参数)上,对应参数分别为t=与t=2 (0<<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点.
函数是定义在上的偶函数,当时,;当时,的图象是斜率为,在轴上截距为-2的直线在相应区间上的部分.求的值;写出函数的表达式,作出其图象并根据图象写出函数的单调区间.
对于函数。(1)若在处取得极值,且的图像上每一点的切线的斜率均不超过试求实数的取值范围;(2)若为实数集R上的单调函数,设点P的坐标为,试求出点P的轨迹所形成的图形的面积S。
已知是定义在R上的函数,其图象交x轴于A,B,C三点,若点B的坐标为(2,0),且在和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.(1)求c的值;(2)在函数的图象上是否存在一点M(x0,y0),使得在点M的切线斜率为3b?若存在,求出点M的坐标;若不存在,说明理由;
已知函数(I)当时,求函数的极小值(II)试讨论曲线与轴的公共点的个数。