已知数列是公差为的等差数列,且.(1)求数列的通项公式;(2)设数列的前项和为.证明: .
设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率; (2)表示同一工作日需使用设备的人数,求的数学期望.
如图,三棱柱中,点在平面内的射影在上,,. (1)证明:; (2)设直线与平面的距离为,求二面角的大小.
等差数列的前项和为,已知为整数,且. (1)求的通项公式; (2)设,求数列的前项和.
的内角的对边分别为,已知,,求.
对于数对序列,记,,其中表示和两个数中最大的数. (1)对于数对序列,求的值;
(2)记为四个数中最小的数,对于由两个数对组成的数对序列和,试分别对和两种情况比较和的大小;(3)在由五个数对组成的所有数对序列中,写出一个数对序列使最小,并写出的值.(只需写出结论).