已知椭圆的离心率,且直线是抛物线的一条切线. (1)求椭圆的方程; (2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由; (3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
、、为内角,为外接圆半径,为内切圆半径。 (1)求证:; (2)求证:。
如图,正方形所在的平面与平面垂直,是和交点,且. (1)求证:⊥平面; (2)求直线与平面所成角的大小;
甲乙两位学生参加数学竞赛培训,在培训期间他们参加5次预赛成绩记录如下: 甲: 78 76 74 90 82 乙: 90 70 75 85 80 (1)用茎叶图表示这两组数据; (2)从甲乙两人成绩中各随机抽取一个,求甲的成绩比乙高的概率; (3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
已知函数 (1)若函数在上为增函数,求实数的取值范围; (2)当时,求在上的最大值和最小值; (3)当时,求证对任意大于1的正整数,恒成立.
过点的椭圆的离心率为,椭圆与轴交于两点,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点 (1)当直线过椭圆的右焦点时,求线段的长; (2)当点异于点时,求证:为定值