演讲答辩由7位评委老师打分,民主测评由50名学生代表一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及50位同学民主测评票数统计图. (1)求小明演讲答辩所得分数的众数,以及民主测评为“良好”票数的扇形圆心角度数; (2)求小明的综合得分是多少? (3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?
如图,在等腰直角△ABC中,∠ACB=90°,点D、F为BC边上的两点,CD=BF,连接AD,过点C作AD的垂线角AB于点E,连接EF. (1)若∠DAB=15°,AB=,求线段AD的长度. (2)求证:∠EFB=∠CDA.
服装厂准备生产某种样式的服装40000套,分黑色和彩色两种. (1)若生产黑色服装的套数不多于彩色服装套数的,问最多生产多少套黑色服装. (2)目前工厂有100名工人,平均每人生产400套,由于展品会上此种样式服装大受欢迎,工厂计划增加产量;由于条件发生变化,人均生产套数将减少1.25a% ,要使生产总量增加10%,则工人需增加2.4a%,求a的值.
如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°. (1)求两建筑物底部之间水平距离BD的长度; (2)求建筑物CD的高度(结果保留根号).
先化简,再求值:,其中a是方程的解.
全善学校为了解初三学生上学的方式,采用随机抽样的方式进行了问卷调查.分别有:乘公共交通工具(记为A),步行(记为B),乘私家车(记为C),其他方式(记为D).统计后,制成条形统计图和扇形统计图,观察图形的信息,回答下列问题: (1)请补全条形统计图,并计算m=_______乘公共交通工具(记为A)对应的圆心角的度数为_____度; (2)已知被抽查的乘私家车学生中只有一名男生,现从被抽查的乘私家车的同学中随机抽取两名来谈谈节能减排,请你用列表或画树状图的方法求出所选的两名学生刚好是一名男生和一名女生的概率.