已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)把圆C的极坐标方程化为直角坐标方程;(2)将直线向右平移h个单位,所得直线与圆C相切,求h.
(本小题满分14分)如图,在三棱锥中,底面ABC,,AP="AC," 点,分别在棱上,且BC//平面ADE(Ⅰ)求证:DE⊥平面;(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比.
(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.
已知.(1)求f(x)的周期及其图象的对称中心;(2)△ABC中,角A、B、C所对的边分别是、b、c,满足(2c)cosB=bcosC,求的值.
(几何证明选讲选做题)如图所示,过外一点A作一条直线与交于C,D两点,AB切于B,弦MN过CD的中点P.已知AC=4,AB=6,则MP·NP= .
选修4-5:不等式选讲(Ⅰ)已知a和b是任意非零实数.证明:; (Ⅱ)若不等式恒成立,求实数k的取值范围.