某电视台组织部分记者,用“10分制”随机调查某社区居民的幸福指数.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数的得分(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数;(2)若幸福指数不低于9.5分,则称该人的幸福指数为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.
(本小题满分12分)数列满足:(1)求数列的通项公式;(2)设数列的前n项和分别为An、Bn,问是否存在实数,使得 为等差数列?若存在,求出的值;若不存在,说明理由。
(本小题满分12分)一项"过关游戏"规则规定: 在第n 关要抛掷骰子n次, 若这n次抛掷所出现的点数之和大于+1 (n∈N*), 则算过关.(1)求在这项游戏中第三关过关的概率是多少?(2) 若规定n≤3, 求某人的过关数ξ的期望.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。 (1)求异面直线PA与BF所成角的正切值。(2)求证:EF⊥平面PCD。
(本小题满分10分)已知函数(1)求函数的最小正周期T;(2)当时,求函数的最大值和最小值。
(本小题满分12分) 已知点F(1,0),直线,设动点P到直线的距离为,已知,且. (1)求动点P的轨迹方程; (2)若,求向量的夹角; (3)如图所示,若点G满足,点M满足,且线段MG的垂直平分线经过点P,求的面积