已知抛物线.(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;(3)若过点且相互垂直的两条直线,抛物线与交于点与交于点.证明:无论如何取直线,都有为一常数.
已知幂函数的图象经过点.(1)求函数的解析式,并画出图象;(2)证明:函数在上是减函数.
求证:.
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,当每辆车的月租金定为x元时,租赁公司的月收益为y元.(1)试写出x,y的函数关系式(不要求写出定义域);(2)租赁公司某月租出了88辆车,求租赁公司的月收益多少元?
(1)若,求的值.(2)已知,求的值.
已知函数的定义域为集合A,函数的定义域为集合B.(1)求集合A,B;(2)求,.