设是给定的正整数,有序数组()中或.(1)求满足“对任意的,,都有”的有序数组()的个数;(2)若对任意的,,,都有成立,求满足“存在,使得”的有序数组()的个数.
已知数列满足,. (Ⅰ) 求数列{的前项和; (Ⅱ)若存在,使不等式成立,求实数的取值范围.
如图,在四棱锥中,底面是边长为2的正方形,且,=,为的中点. 求: (Ⅰ) 异面直线CM与PD所成的角的余弦值; (Ⅱ)直线与平面所成角的正弦值.
已知数列是公差大于的等差数列,且满足,. (Ⅰ) 求数列的通项公式; (Ⅱ)若数列和数列满足等式(),求数列的前项和.
某学校拟建一块周长为的操场如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽?(精确到,取)
在中,、、所对的边分别是、、,其中,,求角的大小和三角形的面积.