(已知双曲线的中心在坐标原点,焦点在轴上,A是右顶点,B是虚轴的上端点,F是左焦点,当BF⊥AB时,此类双曲线称为“黄金双曲线”,其离心率为,类比“黄金双曲线”,推算出“黄金椭圆”(如图)的离心率=_________;
设等差数列的前项和为,则数列的公差为 .
曲线在点处的切线方程为 .
二项式的展开式中常数项是 .
函数的值域为 .
若对任意,,(、)有唯一确定的与之对应,称为关于、的二元函数. 现定义满足下列性质的二元函数为关于实数、的广义“距离”:(1)非负性:,当且仅当时取等号;(2)对称性:;(3)三角形不等式:对任意的实数z均成立.今给出个二元函数:①;②;③;④.则能够成为关于的、的广义“距离”的函数的所有序号是 .