(已知双曲线的中心在坐标原点,焦点在轴上,A是右顶点,B是虚轴的上端点,F是左焦点,当BF⊥AB时,此类双曲线称为“黄金双曲线”,其离心率为,类比“黄金双曲线”,推算出“黄金椭圆”(如图)的离心率=_________;
如图,在梯形ABCD中,AD∥BC,BD与AC相交于O,过O的直线分别交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,则EF= .
如图,四边形ABCD是等腰梯形,AB∥CD,且AD=CD=1.由4个这样的等腰梯形可以拼出图乙所示的平行四边形,则该平行四边形的面积为 .
(几何证明选讲选做题)在△BC中,D是边AC的中点,点E在线段BD上,且满足BE=BD,延长AE交 BC于点F,则的值为 .
如图,D是△ABC中BC边上一点,点E、F分别是△ABD,△ACD的重心,EF与AD交于点M,则= .
(几何证明选讲选做题)如图3,△ABC中,D、E分别在边AB、AC上,CD平分∠ACB,DE∥BC,如果AC=10,AE=4,那么BC= .