我们把一系列向量排成一列,称为向量列,记作,又设,假设向量列满足:,。(1)证明数列是等比数列;(2)设表示向量间的夹角,若,记的前项和为,求;(3)设是上不恒为零的函数,且对任意的,都有,若,,求数列的前项和.
(.(本题满分12分)已知二次函数和“伪二次函数” (、、),(I)证明:只要,无论取何值,函数在定义域内不可能总为增函数;(II)在二次函数图象上任意取不同两点,线段中点的横坐标为,记直线的斜率为, (i)求证:;(ii)对于“伪二次函数”,是否有(i)同样的性质?证明你的结论.
((本题满分12分)已知椭圆方程为,斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.(Ⅰ)求的取值范围;(Ⅱ)求△面积的最大值.
(本小题满分12分)如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(1)求证:BD⊥FG;(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.(3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
(本小题满分12分)某人玩掷正方体骰子走跳棋的游戏,已知骰子每面朝上的概率都是 ,棋盘上标有第0站,第1站,第2站,……,第100站。一枚棋子开始在第0站,选手每掷一次骰子,棋子向前跳动一次,若掷出朝上的点数为1或2,棋子向前跳一站;若掷出其余点数,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束。设棋子跳到第n站的概率为 ; (1)求 ;(2) 求证: 为等比数列;(3)求玩该游戏获胜的概率。
.(本小题满分12分)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,已知向量(1)若,求实数m的值。(2)若,求△ABC面积的最大值.