在平面直角坐标系中,已知点在圆内,动直线过点且交圆于两点,若△ABC的面积的最大值为,则实数的取值范围为 .
长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C.(1)以直线AB的倾斜角为参数,求曲线C的参数方程;(2)求点P到点距离的最大值.
如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.求证:(1);(2)EF//CB.
已知函数,. (1)若存在,使得,求a的取值范围; (2)若有两个不同的实数解,证明:.
已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.(1)求抛物线E的方程;(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点. (1)求证:平面平面EBD; (2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为,求四棱锥P-ABCD的体积.