已知数列满足,,()(1)若,数列单调递增,求实数的取值范围;(2)若,试写出对任意成立的充要条件,并证明你的结论.
已知集合, 求:(1); (2)
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.(Ⅰ)求椭圆的标准方程;(Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
已知数列的首项为,对任意的,定义.(Ⅰ) 若,(i)求的值和数列的通项公式;(ii)求数列的前项和;(Ⅱ)若,且,求数列的前项的和.
已知在四棱锥中,,,,分别是的中点.(Ⅰ)求证;(Ⅱ)求证;(Ⅲ)若,求二面角的大小.
已知函数(Ⅰ)求函数的最小正周期及单调递增区间;(Ⅱ)在中,若,,,求的值.