已知圆:内有一点,过点作直线交圆于,两点.(1)当经过圆心时,求直线的方程;(2)当弦被点平分时,写出直线的方程.[
已知函数.(1)求函数的最小正周期及单调递增区间;(2)需要把函数的图像经过怎样的变换才能得到函数的图像?(3)在中,、、分别为三边、、所对的角,若,,求的最大值.
四棱锥的底面是正方形,侧棱⊥底面,,是的中点. (Ⅰ)证明//平面; (Ⅱ)求二面角的平面角的余弦值;(Ⅲ)在棱上是否存在点,使⊥平面?若存在,请求出点的位置;若不存在,请说明理由.
(本小题满分16分) 已知数列{an}的前n项和为Sn,且Sn=2an-2n+1,nÎN*. (1)求数列{an}的通项公式; (2)设bn= log2,Tn=+++…+,是否存在最大的正整数k,使得对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,请说明理由.
(本小题满分16分) 已知函数f(x)=x2-2ax+a+2,aÎR. (1)若不等式f(x)<0的解集为Æ,求实数a的取值范围; (2)若不等式f(x)≥a对于xÎ[0,+∞)恒成立,求实数a的取值范围.
(本小题满分15分)某人准备购置一块占地1800平方米的矩形地块,中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(阴影部分所示),大棚所占地面积为S平方米,其中a∶b=1∶2.(1)试用x,y表示S;(2)若要使S最大,则x,y的值各为多少?