设是奇函数,且在内是减函数,又,则的解集是
满足sinsinx+coscosx=的锐角x= .
设函数y=sin(ωx+φ)(ω>0,φ∈(-,))的最小正周期为π,且其图象关于直线x=对称,则在下面四个结论中:①图象关于点(,0)对称;②图象关于点(,0)对称;③在[0,]上是增函数;④在[-,0]上是增函数.正确结论的编号为 .
图中的曲线是函数y=Asin(ωx+φ)的图象(A>0,ω>0,|φ|<),则ω= ,φ= .
已知函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<)的图象经过点(0,1),且一个最高点的坐标为(1,2),则ω的最小值是 .
关于函数f(x)=4sin(2x+)(x∈R),有下列命题:①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;②y=f(x)的表达式可改写为y="4" cos(2x-);③y=f(x)的图象关于点(-,0)对称;④y=f(x)的图象关于直线x=-对称.其中正确命题的序号是 .