某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三个人该课程考核都合格的概率(结果保留三位小数).
某工厂生产一种产品的原材料费为每件40元,若用表示该厂生产这种产品的总件数,则电 力与机器保养等费用为每件元,又该厂职工工资固定支出12500元。 (1)把每件产品的成本费(元)表示成产品件数的函数,并求每件产品的最低成本费; (2)如果该厂生产的这种产品的数量不超过3000件,且产品能全部销售,根据市场调查:每件产品的 销售价与产品件数有如下关系:,试问生产多少件产品,总利润最高?总利润 最高为多少?(总利润总销售额总成本)
已知 (1)判断奇偶性并证明; (2)判断单调性并用单调性定义证明; (3)若,求实数的取值范围.
已知,求的值.
已知集合,,且,求实数的取值范围.
设、分别是椭圆的左、右焦点. (1)若是该椭圆上的一个动点,求的取值范围; (2)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围. (3)设是它的两个顶点,直线与AB相交于点D,与椭圆相交于两点.求四边形面积的最大值