如图,在四棱锥中,底面为直角梯形,,垂直于底面,分别为的中点. (1)求证:; (2)求点到平面的距离.
已知函数,。 (1)若,且函数存在单调递减区间,求的取值范围; (2)当时,求函数的取值范围。
在数列中,,且前n项的算术平均数等于第n项的2n-1倍()。 (1)写出此数列的前5项;(2)归纳猜想的通项公式,并加以证明。
半径为的球的内接圆柱,问圆柱的底半径与高多大,才能使圆柱的体积最大。
在△ABC中,角A,B,C的对边分别是,且。 (1)求的值;(2)若,求的最大值。
求过点(1,2)且与曲线相切的直线方程。