从5名男生和3名女生中任选3人参加奥运会火炬接力活动.若随机变量X表示所选3人中女生的人数,求X的分布表及P(X<2).
如图,矩形与正三角形中, ,,为的中点。现将正三角形沿折起,得到四棱锥的三视图如下:(1)求四棱锥的体积;(2)求异面直线所成角的大小。
已知直线和点,点为第一象限内的点且在直线上,直线交轴正半轴于点,求△面积的最小值,并求当△面积取最小值时的的坐标。
已知直线过两直线和的交点,且直线与点和点的距离相等,求直线的方程。
(本小题满分15分)记函数.(1)若函数在处取得极值,试求的值;(2)若函数有两个极值点,且,试求的取值范围;(3)若函数对任意恒有成立,试求的取值范围.(参考:)
(本小题满分15分)在中,满足的夹角为 ,M是AB的中点(1)若,求向量的夹角的余弦值(2)若,在AC上确定一点D的位置,使得达到最小,并求出最小值