已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
如图,在 ΔABC 中,以 BC 为直径的 ⊙ O 交 AC 于点 E ,过点 E 作 AB 的垂线交 AB 于点 F ,交 CB 的延长线于点 G ,且 ∠ ABG = 2 ∠ C .
(1)求证: EG 是 ⊙ O 的切线;
(2)若 tan C = 1 2 , AC = 8 ,求 ⊙ O 的半径.
某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量 y (件 ) 与销售单价 x (元 ) 之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.
(1)求 y 与 x 之间的函数关系式;
(2)设该护肤品的日销售利润为 w (元 ) ,当销售单价 x 为多少时,日销售利润 w 最大,最大日销售利润是多少?
如图,在平行四边形 ABCD 中, P 是对角线 BD 上的一点,过点 C 作 CQ / / DB ,且 CQ = DP ,连接 AP 、 BQ 、 PQ .
(1)求证: ΔAPD ≅ ΔBQC ;
(2)若 ∠ ABP + ∠ BQC = 180 ° ,求证:四边形 ABQP 为菱形.
2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对 A 《三国演义》、 B 《红楼梦》、 C 《西游记》、 D 《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:
(1)本次一共调查了 名学生;
(2)请将条形统计图补充完整;
(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.
如图,已知抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 的对称轴为直线 x = − 1 ,且抛物线与 x 轴交于 A 、 B 两点,与 y 轴交于 C 点,其中 A ( 1 , 0 ) , C ( 0 , 3 ) .
(1)若直线 y = mx + n 经过 B 、 C 两点,求直线 BC 和抛物线的解析式;
(2)在抛物线的对称轴 x = − 1 上找一点 M ,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;
(3)设点 P 为抛物线的对称轴 x = − 1 上的一个动点,求使 ΔBPC 为直角三角形的点 P 的坐标.