如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.
某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元. (1)当每间商铺的年租金定为13万元时,能租出多少间? (2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?
如图,在菱形ABCD中,∠A=60°,=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E. (1)求∠ABD 的度数; (2)求线段的长.
①计算: ②解方程:
如图,半径为2的⊙C与轴的正半轴交于点A,与轴的正半轴交于点B,点C的坐标为(1,0),若抛物线过A、B两点。 (1)求抛物线的解析式; (2)在抛物线上是否存在P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由; (3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值。
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连结DB,过点E作EM∥BD,交BA的延长线于点M。 (1)求⊙O的半径; (2)求证:EM是⊙O的切线; (3)若弦DF与直径AB相交于点P,当∠DPA=45°时,求图中阴影部分的面积。