以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin+m=0,曲线C2的参数方程为(0<α<π),若曲线C1与C2有两个不同的交点,则实数m的取值范围是____________.
用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算的次数是__________次.
若(a+1)<(3-2a),则a的取值范围是__________.
已知集合A={(x,y)|},集合B={(x,y)|3x+2y-m=0},若A∩B,则实数m 的最小值等于__________.
对于数列,若中最大值,则称数列为数列的“凸值数列”.如数列2,1,3,7,5的“凸值数列”为2,2,3,7,7;由此定义,下列说法正确的有___________________. ①递减数列的“凸值数列”是常数列;②不存在数列,它的“凸值数列”还是本身;③任意数列的“凸值数列”是递增数列;④“凸值数列”为1,3,3,9的所有数列的个数为3.
原命题:“设”以及它的逆命题,否命题,逆否命题中,真命题的个数是______________________.