已知椭圆C:=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.(1)若椭圆C经过两点、,求椭圆C的方程;(2)当c为定值时,求证:直线MN经过一定点E,并求·的值(O是坐标原点);(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,;当为奇数时,. (1)若为偶数,且成等差数列,求的值; (2)设(且N),数列的前项和为,求证:; (3)若为正整数,求证:当(N)时,都有.
已知函数. (1)当时,判断的奇偶性,并说明理由; (2)当时,若,求的值; (3)若,且对任何不等式恒成立,求实数的取值范围.
某企业生产某种商品吨,此时所需生产费用为()万元,当出售这种商品时,每吨价格为万元,这里(为常数,) (1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨? (2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.
已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直. (1)求角的大小; (2)求的取值范围
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1. (1)求异面直线B1C1与AC所成角的大小; (2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.