设f(x)=,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.
已知函数. (1)求函数的单调区间,并指出其增减性; (2)若关于x的方程至少有三个不相等的实数根,求实数a的取值范围.
在数列中,已知,(. (1)求证:是等差数列; (2)求数列的通项公式及它的前项和.
已知函数在区间上的最大值为2. (1)求常数的值; (2)在中,角,,所对的边是,,,若,,面积为.求边长.
如图,曲线是以原点O为中心、为焦点的椭圆的一部分,曲线是以O为顶点、为焦点的抛物线的一部分,A是曲线和的交点且为钝角. (1)求曲线和的方程; (2)过作一条与轴不垂直的直线,分别与曲线依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问是否为定值?若是求出定值;若不是说明理由.
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=. (Ⅰ)求证:平面PQB⊥平面PAD; (Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.