如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).
如图, AB 为 ⊙ O 的直径,且 AB = 4 ,点 C 在半圆上, OC ⊥ AB ,垂足为点 O , P 为半圆上任意一点(不与点 C 重合),过 P 点作 PE ⊥ OC 于点 E ,设 ΔOPE 的内心为 M ,连接 OM 、 PM .
(1)求 ∠ OMP 的度数;
(2)当点 P 在半圆上从点 B 运动到点 A 时,求内心 M 所经过的路径长.
六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离 y (单位: m ) 与滑行时间 x (单位: s ) 之间的关系可以近似的用二次函数来表示.
滑行时间 x / s
0
1
2
3
…
滑行距离 y / m
4
12
24
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约 800 m ,他需要多少时间才能到达终点?
(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.
图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的 A 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.
(1)随机掷一次骰子,则棋子跳动到点 C 处的概率是
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点 C 处的概率.
如图,在平行四边形 ABCD 中, AE 是 BC 边上的高,点 F 是 DE 的中点, AB 与 AG 关于 AE 对称, AE 与 AF 关于 AG 对称.
(1)求证: ΔAEF 是等边三角形;
(2)若 AB = 2 ,求 ΔAFD 的面积.
某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了 10 % ,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?