已知ω>0,a=(2sinωx+cosωx,2sinωx-cosωx),b=(sinωx,cosωx).f(x)=a·b.f(x)图象上相邻的两个对称轴的距离是.(1)求ω的值;(2)求函数f(x)在区间上的最大值和最小值.
在△ABC中,a,b,c分别为内角A,B,C的对边, 且2asinA=(2b+c)sinB+(2c+b)sinC. (1)求A的大小; (2)求sinB+sinC的最大值.
在△ABC中,中线长AM=2. (1)若=-2,求证:++=0; (2)若P为中线AM上的一个动点,求·(+)的最小值.
已知函数f(x)=2sincos+cos. (1)求函数f(x)的最小正周期及最值; (2)令g(x)=f,判断函数g(x)的奇偶性,并说明理由.
如图,某中学甲、乙两班共有25名学生报名参加了一项测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同. (1)求这两个班学生成绩的中位数及x的值; (2)如果将这些成绩分为“优秀”(得分在175分以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
已知 (1)化简; (2)若是第三象限角,且cos()=,求的值.