已知cos α=,cos(α+β)=-,且α、β∈,求cos(α-β)的值.
如图,地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站. (1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 .
如图,从点作轴的垂线交曲线于点,曲线在点处的切线与轴交于点.再从做轴的垂线交曲线于点,依次重复上述过程得到一系列点:;;…;,记点的坐标为(). (1)试求与的关系(); (2)求.
叙述并证明余弦定理.
如图,设是圆上的动点,点是在轴上投影,为上一点,且. (1)当在圆上运动时,求点的轨迹的方程; (2)求过点且斜率为的直线被所截线段的长度.
如图,在中,,,是上的高,沿把折起,使. (1)证明:平面平面; (2)设为的中点,求与夹角的余弦值.