如图,椭圆C:+=1的焦点在x轴上,左右顶点分别为A1,A,上顶点为B,抛物线C1,C2分别以A,B为焦点,其顶点均为坐标原点O,C1与C2相交于直线y=x上一点P.(1)求椭圆C及抛物线C1,C2的方程.(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M,N,已知点Q(-,0),求·的最小值.
(本小题满分12分)在锐角中,. (Ⅰ)求角;(Ⅱ)若,求的取值范围.
选修4-5:不等式选讲 已知函数 (1)若的解集为,求实数的值; (2)当且时,解关于的不等式
选修4-4:坐标系与参数方程选讲 在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为 (1)求曲线的普通方程与曲线的直角坐标方程; (2)设点,曲线与曲线交于,求的值.
已知函数. (1)求函数的单调区间; (2)设函数,若,使得成立,求实数的取值范围; (3)若方程有两个不相等的实数根,求证:
已知抛物线,过点的直线与抛物线交于两点,且直线与轴交于点C. (1)求证:成等比数列; (2)设,试问是否为定值?若是,求出此定值;若不是,请说明理由.