如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积.(1)求V(x)的表达式.(2)求V(x)的最大值.
解不等式(本题共8分)
(本小题满分14分)已知函数满足,且有唯一实数解。 (1)求的表达式 ; (2)记,且=,求数列的通项公式。 (3)记 ,数列{}的前 项和为 ,是否存在k∈N*,使得对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
(本小题满分14分)某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元。 (1)若扣除投资及各种经费,则从第几年开始获取纯利润? (2)若干年后,外商为开发新项目,按以下方案处理工厂:纯利润总和最大时,以16万美元出售该厂,问多长时间可以出售该工厂?能获利多少?
(本小题满分14分)已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上。 (1)求a1和a2的值;(2)求数列{an},{bn}的通项an和bn;
(本小题满分14分)已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量,, (1)若//,求证:ΔABC为等腰三角形; (2)若⊥,边长c = 2,角C = ,求ΔABC的面积 .