如图,在直三棱柱(侧棱和底面垂直的棱柱)中,,,,且满足.(1)求证:平面侧面;(2)求二面角的平面角的余弦值。
在中,分别为角的对边,且(Ⅰ)求;(Ⅱ)若,点是线段中点,且,若角大于,求的面积.
已知函数(Ⅰ)求函数y = f(x)的单调递增区间;(Ⅱ)当x∈[0,] 时,函数y=f(x)的最小值为 ,试确定常数a的值.
已知等差数列满足:,,其中为数列的前n项和.(Ⅰ)求数列的通项公式;(Ⅱ)若,且成等比数列,求的值。
已知圆,点P是直线上的一动点,过点P作圆M的切线PA,PB,切点为A,B.(1)当切线PA的长度为时,求点P的坐标;(2)若的外接圆为圆N,试问:当P在直线上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.(3)求线段AB长度的最小值.
如图,的顶点,的平分线CD所在直线方程为,AC边上的高BH所在直线方程为.(1)求顶点C的坐标;(2)求的面积.