某市准备从5名报名者(其中男3人,女2人)中选2人参加两个副局长职务竞选。(1)求所选2人均为女副局长的概率;(2)若选派两个副局长依次到A、B两个局上任,求A局是男副局长的情况下,B局是女副局长的概率。
(本小题满分14分)已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上。 (1)求a1和a2的值;(2)求数列{an},{bn}的通项an和bn;
(本小题满分14分)已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量,, (1)若//,求证:ΔABC为等腰三角形; (2)若⊥,边长c = 2,角C = ,求ΔABC的面积 .
(本小题满分12分)等比数列{an}中,an > 0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25, a3与a5的等比中项为2. (1)求数列{an}的通项公式; (2)设bn=log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式;
(本小题满分12分)的面积是30,分别是三内角的对边,且. (1)求; (2)若,求的值。
(本题14分)已知函数f (x) = ax3 +x2 -ax,其中a,x∈R. (Ⅰ)若函数f (x)在区间(1,2)上不是单调函数,试求a的取值范围; (Ⅱ)直接写出(不需给出运算过程)函数的单调递减区间; (Ⅲ)如果存在a∈(-∞,-1],使得函数, x∈[-1, b](b > -1),在x = -1处取得最小值,试求b的最大值.