设不等式|x-2|<a(a∈N*)的解集为A,且∈A,∉A.(1)求a的值;(2)求函数f(x)=|x+a|+|x-2|的最小值.
如图,在四棱锥中,四边形是平行四边形,,点E是的中点. (1)求证:∥平面; (2)求证:平面平面.
已知两点,. (1)求过、两点的直线方程; (2)求线段的垂直平分线的直线方程; (3)若圆经过、两点且圆心在直线上,求圆的方程.
已知函数,,且点处取得极值. (Ⅰ)求实数的值; (Ⅱ)若关于的方程在区间上有解,求的取值范围; (Ⅲ)证明:.
已知椭圆的中心在坐标原点,焦点在轴上,椭圆右焦点,且 (1)求椭圆的标准方程; (2)若直线:与椭圆相交于,两点(都不是顶点),且以为直径 的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
如图,圆:. (Ⅰ)若圆与轴相切,求圆的方程; (Ⅱ)已知,圆与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.