如图,三棱柱ABC-A1B1C1的侧棱AA1⊥平面ABC,△ABC为正三角形,侧面AA1C1C是正方形, E是的中点,F是棱CC1上的点.(1)当时,求正方形AA1C1C的边长;(2)当A1F+FB最小时,求证:AE⊥平面A1FB.
已知函数 (1)若函数的图象的一个公共点恰好在x轴上,求a的值; (2)若p和q是方程的两根,且满足证明: 当
设,函数 (1)求m的值,并确定函数的奇偶性; (2)判断函数的单调性,并加以证明。
为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同。若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰。 (1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值? (2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围。
如图,为正三角形,平面ABC,AD//BE,且BE=AB+2AD,P是EC的中点。 求证:(1)PD//平面ABC; (2)EC平面PBD。
已知 (1)求函数的最小正周期; (2)若,求的值。