如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1,CB1的中点,DE⊥面CBB1.(1)证明:DE∥面ABC;(2)求四棱锥CABB1A1与圆柱OO1的体积比.
直三棱柱中,,,,,点D在上. (1)求证:; (2)若D是AB中点,求证:AC1∥平面B1CD; (3)当时,求二面角的余弦值.
已知数列的前n项和为, (1)证明:数列是等差数列,并求; (2)设,求证:.
已知向量,,函数. (1)若,求的值; (2)在锐角△ABC中,角A,B,C的对边分别是,且满足,求的取值范围.
已知数列{an}满足:(其中常数λ>0,n∈N*). (1)求数列{an}的通项公式; (2)当λ=4时,是否存在互不相同的正整数r,s,t,使得ar,as,at成等比数列?若存在,给出r,s,t满足的条件;若不存在,说明理由; (3)设Sn为数列{an}的前n项和.若对任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求实数λ的取值范围.
已知函数,其中为参数,且. (1)当时,判断函数是否有极值,说明理由; (2)要使函数的极小值大于零,求参数的取值范围; (3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。