已知为椭圆的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设 .(1)证明: 成等比数列;(2)若的坐标为,求椭圆的方程;(3)在(2)的椭圆中,过的直线与椭圆交于、两点,若,求直线的方程.
如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.
已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点. (1)求证:平面B1EF⊥平面BDD1B1; (2)求点D1到平面B1EF的距离.
如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6, OE∥AD. (1)求二面角B-AD-F的大小; (2)求直线BD与EF所成的角的余弦值.
如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线 BD′上,∠PDA=60°. (1)求DP与CC′所成角的大小; (2)求DP与平面AA′D′D所成角的大小.
如图所示,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动. (1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由; (2)求证:无论点E在BC边的何处,都有PE⊥AF; (3)当BE为何值时,PA与平面PDE所成角的大小为45°.