已知为椭圆的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设 .(1)证明: 成等比数列;(2)若的坐标为,求椭圆的方程;(3)在(2)的椭圆中,过的直线与椭圆交于、两点,若,求直线的方程.
如图,在底面为平行四边形的四棱锥中,,平面,且,点是的中点.(Ⅰ)求证:平面;(Ⅱ)若,求点到平面的距离.
在中,内角对边分别为,且.(Ⅰ)求角的大小;(Ⅱ)若,求的值.
已知函数,(1)求证: ;(2)设,求证:存在唯一的使得g(x)图象在点A()处的切线与y=f(x)图象也相切;(3)求证:对任意给定的正数a,总存在正数x,使得成立.
已知数列满足,数列满足(1)若为等比数列,求的前n项的和;(2)若,求数列的通项公式;(3)若,求证:
(本小题满分16分)已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若点在椭圆上,点在轴上,且,求直线方程.