某校高一年级名学生参加数学竞赛,成绩全部在分至分之间,现将成绩分成以下段:,据此绘制了如图所示的频率分布直方图. (1)求成绩在区间的频率;(2)从成绩大于等于分的学生中随机选名学生,其中成绩在内的学生人数为,求的分布列与均值.
在中,求的值。
(1)(2)
已知定点及椭圆,过点的动直线与椭圆相交于两点. (1)若线段中点的横坐标是,求直线的方程; (2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.
设是公比大于1的等比数列,为数列的前项和.已知, 且构成等差数列. (1)求数列的通项公式; (2)令,求数列的前项和.
设,分别为椭圆的左、右焦点,过的直 线与椭圆相交于,两点,直线的倾斜角为,到直线的距离为; (1)求椭圆的焦距; (2)如果,求椭圆的方程.