如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=. (1)证明:A1C⊥平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角θ的大小.
数列的前项和为,数列是首项为,公差为的等差数列,且成等比数列. (Ⅰ)求数列与的通项公式; (Ⅱ)若,求数列的前项和.
已知不等式的解集为. (Ⅰ )求的值; (Ⅱ )若,求的取值范围.
在极坐标系中,圆的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系. (Ⅰ)求圆的直角坐标方程; (Ⅱ)若圆上的动点的直角坐标为,求的最大值,并写出取得最大值时点P的直角坐标.
已知线性变换:对应的矩阵为,向量β. (Ⅰ)求矩阵的逆矩阵; (Ⅱ)若向量α在作用下变为向量β,求向量α.
已知函数. (Ⅰ)当时,求曲线在原点处的切线方程; (Ⅱ)当时,讨论函数在区间上的单调性; (Ⅲ)证明不等式对任意成立.