如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=. (1)证明:A1C⊥平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角θ的大小.
已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求函数的单调区间与极值.
已知函数,数列是公差为d的等差数列,是公比为q ()的等比数列.若 (Ⅰ)求数列,的通项公式; (Ⅱ)设数列对任意自然数n均有, 求 的值。
已知集合,在平面直角坐标系中,点的坐标x∈A,y∈A。计算:(1)点正好在第二象限的概率;(2)点不在x轴上的概率;(3)点正好落在区域上的概率。
已知,(Ⅰ)求的值;(Ⅱ)求的值
如图,矩形花园ABCD,AB为4米,BC为6米,小鸟任意落下,则小鸟落在阴影区的概率是多少?