如图,在平面直角坐标系中,已知点坐标为(2,4),直线x=2与轴相交于点,连结,抛物线y=x从点沿方向平移,与直线x=2交于点,顶点到点时停止移动.(1)求线段所在直线的函数解析式;(2)设抛物线顶点的横坐标为,①用的代数式表示点的坐标;②当为何值时,线段最短;(3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由.
某市居民用电的电价实行阶梯收费,收费标准如下表: (1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值. (2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?
如图,已知BD平分∠ABF,且交AE于点D, (1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法); (2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图: 请根据以上统计图提供的信息,解答下列问题: (1)共抽取_____名学生进行问卷调查; (2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数; (3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.
解不等式组:.
解方程:.