如图,小丽在观察某建筑物.(1)请你根据小亮在阳光下的投影,画出建筑物在阳光下的投影.(2)已知小丽的身高为,在同一时刻测得小丽和建筑物的投影长分别为和,求建筑物的高.
如图为某景区五个景点 A , B , C , D , E 的平面示意图, B , A 在 C 的正东方向, D 在 C 的正北方向, D , E 在 B 的北偏西 30 ° 方向上, E 在 A 的西北方向上, C , D 相距 1000 3 m , E 在 BD 的中点处.
(1)求景点 B , E 之间的距离;
(2)求景点 B , A 之间的距离.(结果保留根号)
如图,在四边形 ABCD 中, AD / / BC , BA = BC , BD 平分 ∠ ABC .
(1)求证:四边形 ABCD 是菱形;
(2)过点 D 作 DE ⊥ BD ,交 BC 的延长线于点 E ,若 BC = 5 , BD = 8 ,求四边形 ABED 的周长.
某校在宣传“民族团结”活动中,采用四种宣传形式: A .器乐, B .舞蹈, C .朗诵, D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有 人;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
如图1,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 与 x 轴的负半轴交于点 A ,与 y 轴交于点 C ( 0 , − 3 ) ,顶点为 P ( − 1 , − 4 ) , PB ⊥ x 轴于点 B .
(1)求抛物线的解析式;
(2)连接 AC ,在 x 轴下方的抛物线上存在点 N , BN 与 AC 的交点 F 平分 BN ,求点 F 的坐标;
(3)将线段 BP 和 BA 绕点 B 同时顺时针旋转相同的角度,得到线段 BE , BD ,直线 PE , AD 相交于点 M .
①如图2,设 PE 与 x 轴交于点 H ,线段 BE 与 AD 交于点 G ,求 BG BH 的值;
②连接 OM , OM 的长随线段 BP , BA 的旋转而发生变化,请直接写出线段 OM 长度的取值范围.
如图1, ∠ PAQ = 90 ° ,分别在 ∠ PAQ 的两边 AP , AQ 上取点 B , E ,使 AB = AE ,点 D 在 ∠ PAQ 的平分线 AM 上, DF ⊥ AB 于点 F ,点 F 在线段 AB 上(不与点 A 重合),以 AB , AD 为邻边作 ▱ ABCD ,连接 CF , EF .
(1)猜想 CF 与 EF 之间的关系,并证明你的猜想;
(2)如图2,连接 CE 交 AM 于点 H .
①求证: AD + 2 DH = 2 AB .
②若 AB = 9 , HD AH = 2 7 ,求线段 BC 的长.