如图,小丽在观察某建筑物.(1)请你根据小亮在阳光下的投影,画出建筑物在阳光下的投影.(2)已知小丽的身高为,在同一时刻测得小丽和建筑物的投影长分别为和,求建筑物的高.
如图,在□ABCD中,AB=2 BC=4,点E、F分别是BC、AD的中点. (1)求证:△ABE≌△CDF; (2)当四边形AECF为菱形时,求出该菱形的面积.
已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC 的顶点在格点上,称为格点三角形,试判断△ABC的形状.请说明理由.
已知:,,,请你 从中选出你喜欢的两个字母,并求出它们的和.
如图,□ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点. 求证:BE=DF.
某学校抽查了某班级某月10天的用电量,数据如下表(单位:度):
(1)求这个班级平均每天的用电量; (2)已知该校共有20个班级,该月共计30天,试估计该校该月的用电量.