已知函数的导函数为,的图象在点,处的切线方程为,且,直线是函数的图象的一条切线.(1)求函数的解析式及的值;(2)若对于任意,恒成立,求实数的取值范围.
(本小题满分14分)已知定义在的函数同时满足以下三条:①对任意的,总有;②;③当时,总有成立.(1)函数在区间上是否同时适合①②③?并说明理由;(2)设,且,试比较与的大小;(3)假设存在,使得且,求证:.
(本小题满分13分)甲、乙两公司同时开发同一种新产品,经测算,对于函数,,当甲公司投入万元作宣传时,若乙公司投入的宣传费小于万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入万元作宣传时,若甲公司投入的宣传费小于万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投入多少万元宣传费?(2)若甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?
(本小题满分12分)(1)设是正实数,求证:;(2)若,不等式是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的的值.
(本小题满分12分)数列的前项和为且.(1)求数列的通项公式;(2)等差数列的各项均为正数,其前项和为,,又成等比数列,求.
(本小题满分12分)已知函数,函数的图象与函数的图象关于原点对称.若时,总有恒成立,求的取值范围.