已知函数f(x)=2sin ωx-4sin 2+2+a(ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为2.(1)求函数f(x)的最小正周期;(2)若f(x)在区间[6,16]上的最大值为4,求a的值.
如图,在直三棱柱中,,,异面直线与所成 的角为. (Ⅰ)求证:; (Ⅱ)设是的中点,求与平面所成角的正弦值.
设数列{an}是等差数列,数列{bn}的前n项和Sn满足且 (Ⅰ)求数列{an}和{bn}的通项公式: (Ⅱ)设Tn为数列{Sn}的前n项和,求Tn.
已知无穷数列中,、、、构成首项为2,公差为-2的等差数列,、、、,构成首项为,公比为的等比数列,其中,. (1)当,,时,求数列的通项公式; (2)若对任意的,都有成立. ①当时,求的值; ②记数列的前项和为.判断是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.
已知函数(为常数). (1)当时,求的单调递减区间; (2)若,且对任意的,恒成立,求实数的取值范围.
已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆. (1)求椭圆的标准方程; (2)若圆与轴相切,求圆被直线截得的线段长.