在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知直线l的参数方程为为参数),圆的极坐标方程为.(1)若圆关于直线对称,求的值;(2)若圆与直线相切,求的值.
如图,四棱锥P—ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上。(1)求证:平面AEC⊥PDB;(2)当PD=AB且E为PB的中点时,求AE与平面PDB所成角的大小。
已知△ABC中,A(1,1),B(m,),C(4,2),1<m<4。求m为何值时,△ABC的面积S最大。
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=,b=4,且BC边上的高h=。(1)求角C;(2)求边a。
选修4—5:不等式选讲已知,若不等式恒成立,求实数的取值范围.
选修4—4:坐标系与参数方程求直线(为参数)被曲线所截的弦长.