在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1。(1)设平面ABE与平面ACD的交线为直线,求证:∥平面BCDE;(2)设F是BC的中点,求证:平面AFD⊥平面AFE;(3)求几何体ABCDE的体积。
甲、乙两队在进行一场五局三胜制的排球比赛中,规定先赢三局的队获胜,并且比赛就此结束,现已知甲、乙两队每比赛一局,甲队获胜的概率为,乙队获胜的概率为,且每局比赛的胜负是相互独立的,问: (1)甲队以获胜的概率是多少? (2)乙队获胜的概率是多少?
在的展开式中,第三项的二项式系数比第二项的二项式系数大35。 (1)求的值;(2)求展开式中的常数项。
已知数列的前项和是二项式展开式中含奇次幂的系数和. (1)求数列的通项公式; (2)设,求的值.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点. (1)求曲线的轨迹方程; (2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.
已知函数在区间,上单调递增,在区间[-2,2]上单调递减. (1)求的解析式; (2)设,若对任意的x1、x2不等式恒成立,求实数m的最小值。