如图,当,时,求阴影部分的周长和面积.
先化简,再求值:,其中.
已知:如图,在平面直角坐标系O中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
某公司推出一种高效环保型洗涤用品,年初上市后公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)反映了该公司年初以来累积利润S(万元)与销售时间(月)之间的关系(即前个月的利润总和S与的关系).根据图象提供的信息,解答下列问题.(1)如图,已知图象上的三点坐标,求累积利润S(万元)与时间(月)之间的函数关系式;(2)求截止到几月未公司累积利润可达到30万元?(3)求第8月公司所获利润是多少元?
如图1,A,B,C为三个超市.在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通这.A与D,D与C,D与B之间的路程分别为25㎞,10㎞,5㎞.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每于从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H.设H到A的路程为㎞,这辆货车每天行驶的路程为㎞. (1)用含的代数式填空:当0≤≤25时货车从H到A往返1次的路程为2㎞,货车从H到B往返1次的路程为 ㎞;货车从H到C往返2次的路程为 ㎞;这辆货车每天行驶的路程= ;当25<≤35时,这辆货车每天行驶的路程= ;(2)请在图2中画出与(0≤≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?
如图,已知在□ABCD中,AB⊥AC,AB=OA,BC=,对角线AC、BD交于O点,将直线AC绕点O顺时针旋转,分别交BC、AD于点EF.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试证明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.