已知f(x)=xln x,g(x)=x3+ax2-x+2.(1)求函数f(x)的单调区间;(2)求f(x)在区间[t,t+2](t>0)上的最小值;(3)对一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求实数a的取值范围.
如图,A、B、C是三个观察哨,A在B的正东,两地相距6 kM,C在B的北偏西30°,两地相距4 kM.在某一时刻,A观察哨发现某种信号,并知道该信号的传播速度为1 kM/s;4秒后B、C两个观察哨同时发现这种信号.在以过A、B两点的直线为x轴,以线段AB的垂直平分线为y轴的直角坐标系中,指出发射这种信号的地点P的坐标.
已知一椭圆的两焦点为F1(0,-1)、F2(0,1),直线y=4是该椭圆的一条准线.(1)求此椭圆方程;
求的值.
,当时,有,请给予证明.
求常数的值,使与都是有限的.