如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,,E为中点,(1)求证;CE∥平面,(2)求证:求二面角的大小.
(本小题满分12分)为了更好的了解某校高三学生期中考试的数学成绩情况,从所有高三学生中抽取40名学生,将他们的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)若该校高三年级有1800人,试估计这次考试的数学成绩不低于60分的人数及60分以上的学生的平均分;(2)若从[40,50)与[90,100]这两个分数段内的学生中随机选取两名学生,求这两名学生成绩之差的绝对值不大于10的概率
已知函数f(x)=x3+Ax2﹣9x+1,下列结论中错误的是( )
(本小题满分14分)已知函数f(x)=xln(1+x)-a(x+1),其中a为实常数.(1)当x∈[1,+∞)时,f′(x)>0恒成立,求a的取值范围;(2)求函数g(x)=f′(x)-的单调区间.
(本小题满分12分)四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=,(1)求证:PD⊥平面ABCD;(2)求证,直线PB与AC垂直;
(本小题满分12分)已知数列{}是公差不为0的等差数列,a1=2且a2, a3, a4+1成等比数列.(1)求数列{}的通项公式;(2)设,求数列{}的前n项和