如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC(2)求点A到平面PBC的距离.
(本小题满分12分)已知向量,定义(1)求函数的单调递减区间;(2)求函数的最大值及取得最大值时的x的取值集合。
已知抛物线.
已知定义在上的函数,其中为常数. (1)若,求证:函数在区间上是增函数; (2)若函数,在处取得最大值,求正数的取值范围.
已知圆 (1)直线A、B两点,若的方程; (2)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量,求动点Q的轨迹方程,并说明此轨迹是什么曲线。
(12分)如图,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是线段A1B1的中点. (1)证明:面⊥平面A1B1BA; (2)证明:; (3)求棱柱ABC—A1B1C1被平面分成两部分的体积比.