在平面直角坐标系中,已知直线的斜率为.(Ⅰ)若直线过点,求直线的方程;(Ⅱ)若直线在轴、轴上的截距之和为,求直线的方程.
(本小题满分12分)如图,在四棱柱中,侧面⊥底面,,底面为直角梯形,其中,, 为中点. (1)求证:平面 ; (2)求锐二面角的余弦值.
(本小题满分12分)某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为的等差数列,他第一次测试合格的概率不超过,且他直到第二次测试才合格的概率为.(Ⅰ)求小刘第一次参加测试就合格的概率;(Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为,求随机变量的分布列和数学期望.
(本小题满分12分)已知函数(Ⅰ)求函数的对称中心;(Ⅱ)已知△ABC内角的对边分别为,且,,,求
(本小题满分14分)设函数.(1)若函数在上为减函数,求实数的最小值;(2)若存在,使成立,求实数的取值范围.
(本小题满分13分)已知椭圆()的左、右顶点分别为,,且,为椭圆上异于,的点,和的斜率之积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设为椭圆中心,,是椭圆上异于顶点的两个动点,求面积的最大值.