在数学活动课上,老师带领学生测河宽.如图,在河岸边找到合适的观测地AB(AB平行于河流方向),河对岸一观测点P,并测得AB=40米,∠PAB=135°,∠PBA=35°.求河宽(精确到0.1米)(参考数据:0.5736,0.8192,0.7002)
用指定的方法解下列方程: (1)x2+4x﹣1=0(用配方法); (2)2x2﹣8x+3=0(用公式法).
如图,已知抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0),B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,作菱形BDEC,使其对角线在坐标轴上,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q. (1)求抛物线的解析式; (2)将抛物线向上平移n个单位,使其顶点在菱形BDEC内(不含菱形的边),求n的取值范围; (3)当点P在线段OB上运动时,直线l交BD于点M.试探究m为何值时,四边形CQMD是平行四边形,并说明理由.
如图,已知正方形ABCD,AC、BD相交于点O,E为AC上一点,AH⊥EB交EB于点H,AH交BD于点F. (1)若点E在图1的位置,判断OE与OF的数量关系,并证明你的结论; (2)若点E在AC的延长线上,请在图2中按题目要求补全图形,判断OE与OF的数量关系,并证明你的结论.
已知关于x的方程mx2﹣3(m+1)x+2m+3=0. (1)求证:无论m取任何实数,该方程总有实数根; (2)若m≠0,抛物线y=mx2﹣3(m+1)x+2m+3与x轴的交点到原点的距离小于2,且交点的横坐标是整数,求m的整数值.
【问题提出】如果我们身边没有量角器和三角板,如何作15°大小的角呢? 【实践操作】如图. 第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开,得到AD∥EF∥BC. 第二步:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM.折痕BM 与折痕EF相交于点P.连接线段BN,PA,得到PA=PB=PN. 【问题解决】 (1)求∠NBC的度数; (2)通过以上折纸操作,还得到了哪些不同角度的角?请你至少再写出两个(除∠NBC的度数以外). (3)你能继续折出15°大小的角了吗?说说你是怎么做的.