已知关于x的方程.(1)当k取何值时,方程有两个实数根;(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为正整数,求k值并用配方法求出抛物线的顶点坐标;(3)若(2)中的抛物线与x轴交于A、B两点,与y轴交于C点.将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△ABC的内部(不包括△ABC的边界),写出n的取值范围.
△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F . (1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论; (2)如图2,若连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论(不需证明); (3)如图3,若将“AB=AC,点D是BC的中点”改为:“∠B=30°,AD⊥BC于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF、BE的比值.
已知:抛物线经过点. (1)求的值; (2)若,求这条抛物线的顶点坐标; (3)若,过点作直线轴,交轴于点,交抛物线于另一点,且,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
如图,四边形OABC是面积为4的正方形,函数的图象经过点B. (1) 求k的值; (2)将正方形OABC分别沿直线AB,BC翻折,得到正方形MABC′和NA′BC.设线段MC′,NA′分别与函数的图象交于点F,E. 求线段EF所在直线的解析式
已知:如图,AB=AC,以AB为直径的⊙O交BC于点D,过D作DE⊥AC于点E. (1) 求证:DE是⊙O的切线; (2)如果⊙O的半径为2,sin∠B=,求BC的长.
如图,在梯形ABCD中,AB∥CD,∠A=90°,CD=4,AB=10,.求BC的长.