给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°. (Ⅰ)证明:AB⊥A1C; (Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
已知这100位顾客中一次购物量超过8件的顾客占55%. (Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率. (注:将频率视为概率)
已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列. (Ⅰ)求a的值及数列{bn}的通项公式; (Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.
设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac. (Ⅰ)求B; (Ⅱ)若sinAsinC=,求C.
函数,过曲线上的点的切线方程为. (1)若在时有极值,求的表达式; (2)在(1)的条件下,求在[-3,1]上的最大值; (3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.